Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
Linear Differential Operators
Description
A differential operator L in C(x)[Dx] is an expression a_0*Dx^0+ ... +a_n*Dx^n where a_0, ... , a_n are elements of C(x). So it is a polynomial in Dx with rational functions as coefficients.
In the functions for differential operators in the DEtools package, the names Dx and x (other names can be used as well) can be specified either by an entry called domain, or by setting _Envdiffopdomain to [Dx,x].
An element L in C(x)[Dx] corresponds to a linear homogeneous differential equation L( y(x) )=0. If L = a_0*Dx^0+ ... +a_n*Dx^n then this is the equation
Multiplication (see DEtools[mult]) in the ring C(x)[Dx] corresponds to composition of differential operators. So if L = mult(f,g) then L( y(x) ) = f(g( y(x) )). In particular mult(Dx,x) = x*Dx + 1.
The following procedures allow only coefficients a_0, a_1, ... , a_n in C(x): DFactor, DFactorLCLM, eigenring, endomorphism_charpoly, formal_sol, gen_exp, integrate_sols.
The following procedures allow more general coefficients: GCRD, LCLM, adjoint, de2diffop, diffop2de, exterior_power, leftdivision, mult, rightdivision, symmetric_product, symmetric_power.
The main purpose of these functions is factorization of differential operators. Factorization is reducing a differential equation to another equation of lower order: If f = L*R then the solutions of R( y(x) ) = 0 are solutions of f( y(x) ) = 0 as well.
In particular all exponential solutions (see DEtools[expsols]) are obtained by computing all right-hand factors of order 1.
See Also
DEtools, DEtools[de2diffop]
Download Help Document