Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
Gcd - inert gcd function
Calling Sequence
Gcd(a, b)
Gcd(a, b, 's', 't')
Parameters
a, b
-
multivariate polynomials
s, t
(optional) unevaluated names
Description
The Gcd function is a placeholder for representing the greatest common divisor of a and b where a and b are polynomials. If s and t are specified, they are assigned the cofactors. Gcd is used in conjunction with either mod, modp1 or evala as described below which define the coefficient domain.
The call Gcd(a, b) mod p computes the greatest common divisor of a and b modulo p a prime integer. The inputs a and b must be polynomials over the rationals or over a finite field specified by RootOf expressions.
The call modp1(Gcd(a, b), p) does likewise for a and b, polynomials in the modp1 representation.
The call evala(Gcd(a, b)) does likewise for a and b, multivariate polynomials with algebraic coefficients defined by RootOf or radicals expressions. See evala,Gcd for more information.
Examples
See Also
evala, gcd, Gcdex, mod, RootOf
Download Help Document