Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
dsolve/piecewise - find solution of ordinary differential equations with piecewise coefficients
Description
The dsolve function solves differential equations with piecewise coefficients. It solves general first order linear, linear constant coefficient with piecewise perturbation, and Riccati equations. It can handle some cases where the differential equation is solved by integration or variation of parameters.
The solutions are found in terms of distribution theory and translated into a piecewise expression.
You can verify a solution by substituting the solution into the equation. However, if the differential equation has jump discontinuities, the verification must be done in terms of Heaviside functions because the derivative at a discontinuous point is undefined in the piecewise function.
The theory is based on the dissertation Martin von Mohrenschildt. "Symbolic Solutions of Discontinuous Differential Equations." Swiss Federal Institute of Technology ETHZ No. 10768
Examples
First Order:
Linear with discontinuous perturbation:
Solutions can also be tested by using odetest.
Non linear:
See Also
convert[Heaviside], convert[piecewise] , dsolve, dsolve[taylorseries], odetest, piecewise
Download Help Document