EllipticModulus - Modulus function k(q)
|
Calling Sequence
|
|
EllipticModulus(q)
|
|
Parameters
|
|
q
|
-
|
expression denoting a complex number such that
|
|
|
|
|
Description
|
|
|
Given the Nome q, , entering the definition of Jacobi Theta functions, for instance
|
>
|
FunctionAdvisor(definition, JacobiTheta1)[1];
|
| (1) |
>
|
FunctionAdvisor(definition, EllipticF)[1];
|
| (2) |
>
|
FunctionAdvisor(definition, JacobiSN)[1];
|
| (3) |
>
|
FunctionAdvisor(definition, JacobiAM);
|
| (4) |
|
Alternatively, given the Modulus k, entering Elliptic integrals and JacobiPQ functions, it is possible to compute the corresponding Nome q, , using EllipticNome, which is the inverse function of EllipticModulus.
|
|
EllipticModulus is defined in terms of JacobiTheta functions by:
|
>
|
FunctionAdvisor( definition, EllipticModulus );
|
| (5) |
>
|
JacobiSN(z,k) = (1/(k^2))^(1/4) * JacobiTheta1(1/2*Pi*z/EllipticK(k),EllipticNome(k)) / JacobiTheta4(1/2*Pi*z/EllipticK(k),EllipticNome(k));
|
| (6) |
|
|
Examples
|
|
>
|
|
| (7) |
>
|
|
| (8) |
>
|
|
| (9) |
>
|
|
| (10) |
>
|
|
| (11) |
>
|
|
| (12) |
|
|
Download Help Document
Was this information helpful?