Maple Professional
Maple Academic
Maple Student Edition
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professional
MapleSim Academic
Maple T.A. - Testing & Assessment
Maple T.A. MAA Placement Test Suite
Möbius - Online Courseware
Machine Design / Industrial Automation
Aerospace
Vehicle Engineering
Robotics
Power Industries
System Simulation and Analysis
Model development for HIL
Plant Modeling for Control Design
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematics Education
Engineering Education
High Schools & Two-Year Colleges
Testing & Assessment
Students
Financial Modeling
Operations Research
High Performance Computing
Physics
Live Webinars
Recorded Webinars
Upcoming Events
MaplePrimes
Maplesoft Blog
Maplesoft Membership
Maple Ambassador Program
MapleCloud
Technical Whitepapers
E-Mail Newsletters
Maple Books
Math Matters
Application Center
MapleSim Model Gallery
User Case Studies
Exploring Engineering Fundamentals
Teaching Concepts with Maple
Maplesoft Welcome Center
Teacher Resource Center
Student Help Center
evalc - symbolic evaluator over the complex field
Calling Sequence
evalc(expr)
Parameters
expr
-
any expression
Description
This evalc(expr) calling sequence is used to manipulate complex-valued expressions, such as , by attempting to split such expressions into their real and imaginary parts. Whenever possible, the output from evalc is put into the canonical form .
The fundamental assumption that evalc makes is that unknown variables represent real-valued quantities. Thus, for example, evalc(Re(a+I*b)) = a and evalc(Im(a+b)) = 0. Furthermore, evalc also assumes that an unknown function of a real variable is real valued.
The assume command can be used to override these default assumptions. For example, assume(u::complex) tells evalc that u is not necessarily real. Note also that some usages of the assume command implicitly imply real and others do not. For example assume(u<1) implies u is real but assume(v^2<1) and assume(abs(v)<1) do not imply that v is real.
The evalc command maps onto sets, lists, equations and relations. The evalc command applied to a complex series will be a series with each coefficient in the above canonical form.
When evalc encounters a function whose decomposition into real and imaginary parts is unknown to it (such as f(1+I) where f is not defined), it attempts to put the arguments in the above canonical form.
The standard functions Re, Im, abs, and conjugate are recognized by evalc, and when such functions are invoked from within a call to evalc they apply the assumptions outlined above. For example, evalc(abs(a+I*b)) = sqrt(a^2+b^2).
A complex-valued expression may be represented to evalc as polar(r,theta) where r is the modulus and theta is the argument of the expression.
For a complete list of the functions initially known to evalc, see evalc/functions.
Examples
Set an assumption on . An alternative way to set this assumption is with assume(-1<v,v<1), which implicitly assumes is real.
See Also
assume, evalc/functions, evalf, polar, Re
Download Help Document